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Abstract

The effects of a heat source distribution on natural convection induced by internal heating are studied by using sim-

plified models of the distribution. A linear stability analysis is made to study the effects on critical Rayleigh number and

critical wavenumber. The total amount of heat generation to set convection and the asymmetry in the convective

motion are discussed for two extreme cases of heat source distribution. Effect of additional bottom wall heating is also

investigated on the critical condition and the asymmetry of the convective motion.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Natural convection occurring in nature and some

industrial devices are driven by internal heating. Exam-

ples in nature include mantle convection in the Earth [1–

4], and motions in the Earth and Venusian atmospheres

[5,6]. In the artificial structures, microwave ovens and

induction heater such as an electric melter generate

internal heat. In the event of hypothetical core melt-

down of the nuclear reactor heat generation is internal.

Furthermore, heat generation in the above configura-

tions is non-uniform. In the atmosphere, sunlight is ab-

sorbed more strongly in the upper layer. Also for the

induction heating by passing electric current, heat gener-

ation is concentrated more in the outer layer of a heating
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material. This effect has been almost neglected although

internal heating changes convective motion drastically.

Despite the importance of internal heat generation,

there are few systematic investigations of its effects.

Most of previous works have only considered the much

simpler case of uniform heat generation. For example,

Tritton and Zarraga [7] and Schwiderski and Schwab

[8] carried out experimental investigations and found

various interesting features; of particular interest was

the dilatation of convection cells with increasing rate

of internal heat generation. Theoretical studies by Rob-

erts [9], Tveitereid and Palm [10] and Tveitereid [11],

however, could not clarify this phenomenon. They

attributed the cell dilatation to non-uniform heat gener-

ation due to imperfections in the experiments; that is, a

deviation from uniform heating due to a spatially

varying electrical conductivity (an improved and more

precise experimental investigation is under progress by

us [12]).

Non-uniform distribution of internal heat generation

was treated by Krishnamurti [6] in the context of cloud
ed.
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Nomenclature

cp specific heat

g gravity

H volumetric heat source

H0 total power deposited

k horizontal wavenumber

L height of the fluid layer

p pressure

Pr Prandtl number

q distribution function of internal heat source

RI internal Rayleigh number

R external Rayleigh number

t time

T temperature

* dimension variable

^ perturbation

� stationary value

u(u,v,w) velocity vector and its components

x(x,y,z) coordinates of position

b bulk modulus

DT temperature difference between the top and

the bottom boundaries

e, g characteristic length of heat source

distribution

H RI/R

j thermal diffusivity

k thermal conductivity

l viscosity

m dynamic viscosity

q density

~ amplitude function of perturbation

c critical value

1 value at T = T1

Fig. 1. Coordinates and configuration; thermal boundary

conditions at the top and bottom are isothermal and adiabatic

respectively, internal heat source H distributes in the vertical

direction.
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formation in meteorology. Her experiment, however,

uses a chemical reaction to simulate the internal heat

generation and cannot be easily modeled for analysis.

Yücel and Bayazitoglu [13] also investigated a non-uni-

form distribution theoretically by using a model in

which the heat source increases exponentially from the

lower to the upper boundary. Their model, however,

was combined with complex boundary conditions which

consequently did not allow the fundamental characteris-

tics of heat source distribution to be clarified.

In the present investigation, we focus our study on the

influence of the heat source distribution on the convec-

tion. As we consider that most of the distribution of the

internal heating is caused by absorption of radiating wave

such asmicrowave, an exponential distribution in the ver-

tical direction is assumed. Using a linear stability analy-

sis, we investigated two cases. In Section 3 we consider

the case where the heat source is concentrated near the

bottom or the top boundary. Earlier studies in 1970s

[7–9] (as well as in our investigations [12]) adopted an adi-

abatic boundary condition at the bottom. In Section 4 we

relax this constraint and investigate the non-adiabatic

case where the bottom boundary is maintained at a con-

stant temperature (wall heating). This problem might be

called ‘‘mixed convection’’ (mixture of Rayleigh–Bénard

Convection and internal heat source convection).
2. Basic equations with uniform internal heating

A horizontal fluid layer unbound for the horizontal

directions has steady internal heat generation H(z*) as

shown in Fig. 1. Let a top (z* = L) and a bottom

(z* = 0) boundary be isothermal with the temperature
T * = T1 and adiabatic, $*T* = 0, respectively. Follow-

ing assumptions are made: a temperature field is domi-

nated by heat conduction and by internal heating in

stationary state, and a pressure field p*(x*) is in hydro-

static equilibrium. The fluid layer obeys Boussinesq

approximation, and density q* is a linear function of

temperature independently of pressure.

Basic equations in the fluid field (velocity u*, p*, T *

and q*) are the continuity equation, the equation of mo-

tion, the energy equation and the equation of state, as

follows.

r� � u� ¼ 0; ð1Þ

q1

Du�

Dt�
¼ �r�p� � q�gez þ lD�u�; ez ¼ ð0; 0; 1Þ; ð2Þ
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q1cp
DT �

Dt�
¼ kD�T � þ Hðz�Þ; ð3Þ

q� ¼ q1½1� bðT � � T 1Þ
; ð4Þ

where Laplacian D� ¼ o2=ox�2 þ o2=oy�2 þ o2=oz�2. Phys-
ical properties k, l, b,H and cp are thermal conductivity,

viscosity, bulk modulus (b ¼ ðdV =dT �ÞT 1
=V , V is vol-

ume), amount of heat generation per unit time and per

unit volume and specific heat respectively. In addition,

q1 = q(T1). It is assumed that temperature dependence

in these physical properties can be neglected.

At first uniform internal heating H(z*) = H0 is con-

sidered. In a stationary state (�u ¼ 0), solutions of Eqs.

(2)–(4) are

T
� � T 1 ¼

H 0

2k
ðL2 � z�2Þ; ð5Þ

�q� ¼ q1 1� b
H 0

2k
ðL2 � z�2Þ

� �
; ð6Þ

�p� ¼ q1gz
� 1� b

H 0

2k
L2 � 1

3
z�2

� �� �
þ const: ð7Þ

By defining perturbations as û�, bT �
, q̂� and p̂�, physical

variables can be expressed as

u� ¼ û�; T � ¼ T
� þ bT �

; q� ¼ �q� þ q̂�; p� ¼ �p� þ p̂�:

Equations (1)–(4) are transformed by substituting these

definitions and Eqs. (5) and (6), and are linearized. We

define dimensionless physical variables as

x ¼ x�

L
; t ¼ j1

L2
t�; p ¼ p�L2

q1j
2
1

; u ¼ L
j1

u�; ð8Þ

where thermal diffusivity j1 = k/(q1cp). By using tem-

perature difference between the top and the bottom

boundary, DT � T0�T1 = H0L
2/(2k), dimensionless

temperature is defined as

T ¼ 1

DT
T �: ð9Þ

Finally linearized equations become

r � û ¼ 0; ð10Þ

oû

ot
¼ �rp̂ þ RIPrbT ez þ PrDû; ez ¼ ð0; 0; 1Þ; ð11Þ

obT
ot

þ dT
dz

ŵ ¼ DbT ; ð12Þ

where

Pr ¼ m1
j1

¼ l=q1

j1

� �
: Prandtl number;

RI ¼
gbH 0L5

2km1j1

: Rayleigh number:

9>>=>>; ð13Þ
Being distinct from usual Rayleigh number related with

wall heating (external Rayleigh number), this kind of

Rayleigh number is called an internal Rayleigh number.

Perturbations are described as

ûðx; tÞbT ðx; tÞ
p̂ðx; tÞ

264
375 ¼

~uðzÞeT ðzÞ
~pðzÞ

264
375 exp½iðaxxþ ayyÞ þ rt
: ð14Þ

By substituting this formula into Eqs. (10)–(12), pertur-

bation equations are derived as

d2

dz2
� k2 � r

Pr

� �
d2

dz2
� k2

� �
~w ¼ RIk

2eT ; ð15Þ

d2

dz2
� k2 � r

� �eT ¼ dT
dz

~w; ð16Þ

where k is horizontal wavenumber, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
x þ a2

y

q
.

Boundary conditions for perturbation velocity are

derived from rigid boundary condition as

~w ¼ d~w
dz

¼ 0 at z ¼ 0; 1: ð17Þ

Corresponding to adiabatic boundary (z = 0) and iso-

thermal boundary (z = 1), boundary conditions for tem-

perature are

deT
dz

¼ 0 at z ¼ 0; eT ¼ 0 at z ¼ 1: ð18Þ

Linear stability analysis is made on perturbation Eqs.

(15) and (16) with boundary conditions (17) and (18).

Critical values, the critical Rayleigh number Rc and crit-

ical wavenumber kc, for uniform internal heating calcu-

lated by Roberts [9] are Rc = 1386.14 and kc = 2.629

(Roberts used the definition of internal Rayleigh number

as RI = (gbH L5)/(kmj), and it is twice in our definition.

Thus, Rc in his paper is 2772.28). Comparing with Ray-

leigh–Bénard convection (Rc = 1707.76 and kc = 3.117,

Reid and Harris [14]), these results show that convection

occurs more easily and convection cell becomes larger in

the internally heated convection.
3. Distributed heat source

3.1. General treatment of heat source distribution

Distributed internal heat source is expressed as

follows.

Hðz; eÞ ¼ H 0

e
qðz; eÞ; ð19Þ

where, q(z, e) is a normalized function that expresses a

form of the heat source distribution, and e is a character-
istic length related to the form.
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By this definition,Z 1

0

Hðz; eÞdz ¼ H 0:

H0 is total power induced by internal heating without

dependence on a distribution form. In the case with uni-

form internal heating, heat source distribution can be

expressed by this formula as q(z, e)/e = 1.

3.2. Concentration of heat source on the bottom boundary

Heat source distribution, which concentrates near the

bottom boundary, is considered. A model of heat source

distribution, which has the maximum at the bottom and

decreases to the upward direction exponentially as fol-

lows, is used.

Hðz; eÞ ¼ H 0

QðeÞ exp � z
e

� �
; ð20Þ

QðeÞ ¼
Z 1

0

exp � z
e

� �
dz ¼ e 1� exp � 1

e

� �� �
:

Heat source distributions for various values of e are

shown in Fig. 2. As is seen in this figure, heat source con-

centrates more near the bottom with decrease of e. It be-
comes close to uniform distribution by increasing e. H
becomes H0 when e approaches the limit of infinity.

For this model of heat source distribution, the tempera-

ture profile in heat conduction is derived by integrating

the equation of heat conduction (3), which contains the

distribution (20), with boundary conditions (18) as

follows.

T
� � T 1 ¼

H 0L2

k
e2

QðeÞ exp � 1

e

� ��
� exp � z

e

� �
þ 1� z

e

�
: ð21Þ
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Fig. 2. (a) heat source distribution and (b) temperature profile

at conduction state versus e, broken line shows temperature

profile for uniform internal heating, H = H0.
A temperature difference between the top and the bot-

tom, DT, is

DT ¼ T
�ðz ¼ 0Þ � T 1

¼ H 0L2

k
e2

QðeÞ exp � 1

e

� �
þ 1� e

e

� �
: ð22Þ

Temperature profile for the vertical direction expressed

by Eq. (21) is shown in Fig. 2(b). In this figure a broken

line shows a profile in the case with uniform heating;

namelyH = H0. T
�
approaches this curve asymptotically

with respect to e. Fig. 3 shows a variation of the normal-

ized temperature difference DT/(H0L
2/2k) as a function

of e, where the demoninator is the temperature difference

for uniform heating, H = H0. At e = 0, DT is two times

the temperature difference for uniform heating, and the

limiting value for e ! 1 is equal to the value at uniform

heating.

Perturbation equation on temperature for such inter-

nal heat distribution is derived as

d2

dz2
� k2 � r

� �eT ¼ � 1

CðeÞ 1� exp � z
e

� �h i
~w; ð23Þ

where

CðeÞ ¼ e exp � 1

e

� �
þ 1

e
� 1

� �
:

For the perturbation equation (15), the internal Ray-

leigh number is defined as

RI ¼
gbH 0L5

km1j1

e2

QðeÞ exp � 1

e

� �
þ 1

e
� 1

� �
: ð24Þ

RI has a characteristic length of heat source distribution

e in addition to the height of the fluid layer L.

In a state of neutral stability (r = 0) an equation for

~w is derived from Eqs. (15) and (23) as

d2

dz2
� k2

� �3

~w ¼ � RIk
2

CðeÞ 1� exp � z
e

� �h i
~w: ð25Þ
0 0.5 1 1.5 2

1

1.5
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∆T
/(

H
0L

2 /2
  ) λ

ε

H = H0 (const.)

Fig. 3. Variation of normalized temperature difference DT/
(H0L

2/2k) versus e, where the denominator is temperature

difference for uniform heating H = H0.
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The method used in Sparrow et al. [15] and Kulacki and

Goldstein [16] calculated eigenvalues. A solution of Eq.

(25) is expressed by using power series as following:

~w ¼
X5
i¼0

Cif ðiÞðzÞ; f ðiÞ ¼
X1
n¼0

bðiÞn zn: ð26Þ

A characteristic equation is derived using this solution,

perturbation equation (25) and boundary conditions

(17) and (18). Derivation of characteristic equation is

shown in Sparrow et al. [15]. The method of determining

bðiÞn will be shown in Appendix.

Critical values, Rc and kc, for several values of e were
obtained. Variations in these values with respect to e are
shown in Fig. 4. In these figures, broken lines show crit-

ical values for uniform internal heating calculated by

Roberts [9]. Rc and kc increase with e and approach

asymptotically to these lines; H = H0. The largest differ-

ence of kc from uniform heating is only 2% for e inves-

tigated here, so that this distribution of heat source

has little influence on the size of convection cell. On

the other hand, Rc for e = 0.2 is 13% smaller than that

for uniform heating. Therefore the concentration of heat

source near the bottom would lower the stability of the

convection.

Discussing total power necessary to induce convec-

tion is also important for a laboratory experiment and

for industrial problems related with heat removing. A

part of Rc related to the form of heat source distribution

is expressed as

DðeÞ � e2

QðeÞ exp � 1

e

� �
þ 1

e
� 1

� �
:

0 0.5 1 1.5 2
1200

1300

1400
2.5

2.6

2.7

k c
R

c

ε

H = H0

H = H0

Fig. 4. Variation of critical Rayleigh number Rc (below) and

critical wavenumber kc (above) versus e, broken lines express kc
and Rc for uniform internal heating.
Because Rc/D(e) � H0, comparison of total power in

each case is equal to estimating Rc/D(e). Fig. 5 shows

the variation of total power with respect to e. In e = 2,

convection occurs at smaller heat power than that in

uniform heating by 10% in spite of the temperature pro-

file in e = 2 being nearly that in uniform heating as

shown in Fig. 2(b). This result suggests that such slight

concentration of heat source to the bottom can promote

convection occurring significantly without increasing to-

tal heat amount as an advantage, and also slight devia-

tion of heat source from uniform heating induces large

difference of the critical Rayleigh number even the same

amount of heat is added to the fluid layer.

3.3. Concentration of heat source on the top boundary

A heat source distribution in which heat source con-

centrates on the top boundary is expressed as

Hðz; gÞ ¼ H 0

QðgÞ exp
z� 1

g

� �
; ð27Þ

where

QðgÞ ¼
Z 1

0

exp
z� 1

g

� �
dz ¼ g 1� exp � 1

g

� �� �
:

It becomes the maximum at the top boundary. In this

definition, g is a characteristic length of the heat source

distribution, and as shown in Fig. 6(a), heat amount

more concentrates on the top boundary with decrease

of g.
Temperature profile in the conduction state for this

heat source distribution and temperature difference are

derived as

T
� � T 1

¼ H 0L2

k
g2

QðgÞ 1� exp
z� 1

g

� �
þ z� 1

g
exp � 1

g

� �� �
;

ð28Þ

and
0 0.5 1 1.5 2

1500

2000

2500

R
c 
/D

(ε
)

ε

H = H0 (const.)

Fig. 5. Variation of total power necessary to induce convection

with respect to e, broken line shows one for uniform internal

heating.
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Fig. 6. (a) heat source distribution and (b) temperature profile

at conduction state versus g, broken line shows temperature

profile for uniform internal heating, H = H0.
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DT ¼ T
�ðz ¼ 0Þ � T 1

¼ H 0L2

k
g2

QðgÞ 1� 1þ 1

g

� �
exp � 1

g

� �� �
: ð29Þ

Fig. 6(b) shows temperature profile expressed as Eq. (28)

for a several value of g. For small g, temperature varia-

tion exists only near the top and slightest near the bot-

tom. For instance, at g = 0.1, temperature is nearly

constant in the lower half of the fluid layer and decreas-

ing amount of temperature at z = 0.5 is only 1% or less

of the maximum. Fig. 7 shows a variation of the normal-

ized temperature difference DT/(H0L
2/2k) as a function

of g. It converges to the temperature difference for uni-

form heating at the limit of g !1 and becomes zero

at g = 0.

From Eqs. (16), (28) and (29), the perturbation equa-

tion is derived as follow.
0 0.5 1 1.5 2

0.5

1

∆T
/(

H
0L

2 /2
  ) λ

η

H = H0 (const.)

Fig. 7. Variation of normalized temperature difference DT/(H0

L2/2k) versus g, where the denominator is temperature differ-

ence for uniform heating H =H0.
d2

dz2
� k2 � r

� �eT ¼� 1

EðgÞ exp
z� 1

g

� �
� exp �1

g

� �� �
~w;

ð30Þ

where

EðgÞ ¼ g 1� 1þ 1

g

� �
exp � 1

g

� �� �
:

On the other hand, from Eq. (15),

d2

dz2
� k2 � r

Pr

� �
d2

dz2
� k2

� �
~w ¼ RIk

2eT ;
RI ¼

gbH 0L5

km1j1

g2

QðgÞ 1� 1þ 1

g

� �
exp � 1

g

� �� �
:

ð31Þ

The equation for perturbation velocity ~w in the state of

neutral stability (r = 0) is

d2

dz2
� k2

� �3

~w ¼ � RIk
2

EðgÞ exp
z� 1

g

� �
� exp � 1

g

� �� �
~w:

ð32Þ

Fig. 8 shows variations of Rc and kc with respect to g.
Both variations are gradual for g P 0.5, but sharp below

g = 0.5. At g = 0.1, for instance, Rc becomes 4.5 times as

large as that for H = H0. For a small value of g, the tem-

perature is nearly constant over a wide range of the ver-

tical direction as seen in Fig. 6(b). Temperature gradient

is gradual, but the fluid layer is certainly unstable

just only gradual temperature gradient. Such a layer,

however, clearly reduces instability of the fluid layer as

given in Fig. 8. Therefore, we name such a layer as a
0.2 0.4 0.6 0.8 1

2000

3000

4000

5000

6000

2.6

R
c

η

H = H0

H = H0

Fig. 8. Variation of critical Rayleigh number Rc (below) and

critical wavenumber kc (above) versus g, broken lines express kc
and Rc for uniform internal heating.
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quasi-stable layer. Large deformation of a temperature

profile from uniform heating with formation of the qua-

si-stable layer especially increases a dimensionless criti-

cal wavenumber kc. The increase of kc from uniform

heating is approximately 14% at g = 0.1, and an extreme

concentration of heat source on the bottom boundary

may induce large influence on the size of the convection

cell.

Eigenfunction ~w for uniform internal heating is al-

most symmetrical with respect to the half line of the fluid

layer. For a heat source distribution in which heat

source concentrates on the top boundary, ~w is not sym-

metric and the center of the convection cells becomes

slightly higher than the half line. For instance, this dis-

tance is approximate 3% of the height of the fluid layer

for the distributed internal heat source with g = 0.1. Pro-

file of ~w in the internally heated convection is originally

asymmetric because temperature profile in the conduc-

tion state is asymmetric being different from the stan-

dard Rayleigh–Bénard convection. It is, however, not

apparent in the uniform internal heating. Concentration

of heat source on the top boundary enhances such asym-

metric property of ~w. There is no clear critical value of g
for asymmetry to be induced and thickness of the quasi-

stable layer cannot be determined because temperature

decreases to the vertical direction monotonically even

for small value of g.
Using Rc/D(g) can estimate total power necessary to

induce convection, where

DðgÞ ¼ g2

QðgÞ 1� 1þ 1

g

� �
exp � 1

g

� �� �
:

Fig. 9 shows a variation of such total power with respect

to g. When g = 0.1, the fluid layer needs larger heating

power than in uniform heating by 20 times. Even at

g = 1, the total power becomes 1.3 times.
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η
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Fig. 9. Variation of total power necessary to induce convection

with respect to g, broken line shows one for uniform internal

heating. Inside figure shows closeup of part enclosed by broken

curve.
4. Combination with wall heating

In the last section we neglected heat flow through the

bottom boundary in order to estimate influence of dis-

tributed internal heat source on an experiment, which

has adiabatic boundary as the bottom boundary. In this

section we consider the case in which there is wall heat-

ing at the bottom with T* = T2, T2 > T1 not only inter-

nal heating as more realistic problem.

4.1. Temperature profile with Internal and External

Rayleigh number

Adding of wall heating to the internally heated con-

vection changes a form of a temperature profile. Tem-

perature in the conduction state T
�
is derived as

T � T
� � T 1

T 2 � T 1

¼ �Hz2 þ ðH � 1Þzþ 1;

where H ¼ H 0L2

2kðT 2 � T 1Þ
: ð33Þ

H is a dimensionless parameter, which determines a

form of a temperature profile. Fig. 10 shows examples

of temperature profile for two values of H. For H 6 1,

the temperature profile written by a broken line has fully

unstable gradient, namely, temperature decreases to the

vertical direction monotonically. On the contrary, for

H > 1, the profile written by a solid line has a local stable

layer in which temperature gradient is positive with

dimensionless height hs. It is easy to derive from Eq.

(33) that hs = (H�1)/2H. hs increases with respect to H
and hs becomes 1/2 at H !1.
0 0.5 1 1.5

0.5z

T

Θ > 1

hs

Fig. 10. Comparison of temperature profiles for difference H;

solid line H 6 1 and broken line H > 1. hs shows height of local

stable layer in which temperature gradient is positive in the

vertical direction.
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The definition of H is represented as

H ¼ H 0L2

2k
=ðT 2 � T 1Þ;

¼ RI

R
:

ð34Þ

It is a ratio of the internal Rayleigh number to the exter-

nal one. For H 6 1, wall heating is dominant and the

overall fluid layer is unstable. On the other hand,

H > 1, internal heating is dominant and a locally stable

layer is formed.

Stability analysis for this problem was already made

by Sparrow et al. [15]. Their interests were, however,

only effects of nonlinear temperature profile on convec-

tion and they did not discuss about H. Critical ‘‘exter-

nal’’ Rayleigh number and critical wavenumber for

each H changes by a selection of a characteristic temper-

ature and a characteristic length. For instance, at H = 5,

Rc calculated by using temperature difference between

both boundaries and height of the fluid layer is 1463.

By using the maximum temperature in the fluid layer

and height of an unstable layer L(1�hs), it becomes

569 [15].

At H > 1, convective motion may change from that

of pure internal heating or that of pure wall heating.

Fig. 11 shows profiles of perturbation velocity ~w. The
profile without wall heating is symmetrical with respect

to the horizontal centerline of the fluid layer. The profile

with large value of H, H = 20, however, becomes asym-
0 0.5 1

0.5

1

z

w(z)

Θ = 20

without wall heating

~

Fig. 11. Comparison of perturbation velocity profiles ~w(z); soid
line H = 20 and broken line internally heated layer without wall

heating.
metric and the position of the maximum ~w moves to up-

ward. Therefore the center of convective motion is

displaced to upward. As already mentioned in the last

section, convective motion of internally heated convec-

tion is potentially asymmetric, and then a local stable

layer formed near the bottom may enhance such asym-

metric convective motion.

4.2. With distributed internal heating

Formation of a local stable layer in the combination

of internal heating and wall heating at the bottom and

symmetry breaking of a profile of velocity perturbation

~w were discussed. Distributed internal heating in which

heat source concentrates on the top boundary makes a

quasi-stable layer and also induces such a symmetry

breaking as mentioned in the last section. Such distrib-

uted internal heat source may accelerate asymmetry of

~w in convection which has internal heating and wall

heating at the bottom. We investigate formation of a

local stable layer and asymmetry of ~w.
Temperature profile in conduction state is derived as

T ¼ T
� � T 1

T 2 � T 1

¼ �Hgf ðz; gÞ þ Hg � 1
� �

zþ 1; ð35Þ

where

Hg ¼
H 0L2

kðT 2 � T 1Þ
g2

QðgÞ ;

and

f ðz; gÞ ¼ e�1=g ez=g þ z� 1
� �

;

0 6 f ðz; gÞ 6 1 for 0 6 z 6 1; g P 0:

This equation and parameter Hg are generalized temper-

ature profile of Eq. (33) and generalized parameter of H,

and Hg is also an important parameter of the form of

temperature profile. Fig. 12 shows temperature profile

for Hg = 0.6 and that for Hg = 1.5, where g = 0.2. As

shown in this figure, a local stable layer is not formed

in the case with Hg = 0.6 but is formed at Hg = 1.5 in

the lower part of the fluid layer. Its height hs becomes

approximately half of the fluid layer although Hg is still

small. It is easy to derive from Eq. (35) that

hs ¼ g ln g½1� e�1=g
 � g
Hg

� �
þ 1; lim

g!1
hs ¼ 1:

This equation shows that height of a stable layer for

large Hg becomes large beyond half height of the fluid

layer, which is the maximum height in uniform heating

case. Such thicker stable layer enhances asymmetry of

~w than in wall heating with uniform internal heating in

which it needs large value of H. For instance, at

g = 0.2 and Hg, the center of the circulation in which

~w is the maximum moves to upward by 5% of height

of the fluid layer even small value of Hg.



0 0.5 1

0.5

1

z

T

Θ    = 1.5

Θ    = 0.6

hs

η
η

Fig. 12. Comparison of temperature profiles for difference Hg

at g = 0.2; solid line Hg = 1.5 and broken line Hg = 0.6. hs shows

height of local stable layer in which temperature gradient is

positive in the vertical direction. 0 0.5 1.5

2000

3000

4000

3.1

3.2

3.3

3.4

k c
R

c

Θ

without wall heating

η

1

Fig. 13. Variation of critical Rayleigh number Rc (below) and

critical wavenumber kc (above) versus Hg at g = 0.2, broken line

expresses Rc for distributed internal heating with g = 0.2

without wall heating.
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By substituting Eq. (35) into Eq. (16), perturbation

equation becomes

d2

dz2
� k2 � r

� �eT ¼ � Hg

g
exp

z� 1

g

� ��
�Hg 1� exp � 1

g

� �� �
þ 1

�
~w: ð36Þ

From Eq. (15),

d2

dz2
� k2 � r

Pr

� �
d2

dz2
� k2

� �
~w ¼ Rk2eT ; ð37Þ

where this Rayleigh number is the external Rayleigh

number expressed as

R ¼ gbðT 2 � T 1ÞL3

m1j1

: ð38Þ

Because both boundaries are isothermal, boundary con-

ditions for temperature perturbation areeT ¼ 0 at z ¼ 0; 1: ð39Þ

Stability analysis calculated Rc and kc for each H with

g = 0.2 as shown in Fig. 13. Hg = 0 means no internal

heating, namely this case is the same to Rayleigh–

Bénard convection. Here critical values calculated in

Reid and Harris [14] are used as critical values at

Hg = 0. Rc increases monotonically with respect to Hg.

When Hg 6 1, temperature gradient at the bottom be-

comes small with increase of Hg, and then inflow of heat

at the bottom becomes small. On the other hand, when

Hg > 1, reversal of temperature gradient near the bot-

tom causes outflow of heat at the bottom. These might
increase Rc. The slope of variation of kc with respect

to Hg increases greatly from Hg = 1. Therefore an in-

crease of wavenumber may be induced by formation of

a local stable layer.
5. Conclusions

Linear stability analysis was used to clarify the effects

of heat source distribution on internally heated convec-

tion. The conditions for the onset of convection, namely

the critical Rayleigh number Rc and critical wavenumber

kc, were determined for non-uniform distributions of

heat source in which heat source is concentrated in the

lower or the upper part of the fluid layer. Concerning

the effects of the heat source distribution a function of

Rc and kc, (defined with respect to the characteristic

length of the source distribution), the following conclu-

sions have been drawn. Concentration of the heat source

near the bottom boundary lowers Rc and eases convec-

tion occurring, namely it lowers the temperature differ-

ence at which convection occurs. Variation of kc,

however, is small, and there is only a slight influence

of this distribution on the size of the convection cell.

Concentration of the heat source near the top boundary

increases Rc and prevents convection occurring. When
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the concentration is extreme, with extremely small g, kc
changes greatly in contrast to when the heat source is

concentrated near the lower boundary. Furthermore,

an asymmetry of the vertical velocity ~w appears, and

then convective flow near the bottom boundary becomes

weak. These variations of the characteristics of convec-

tive motion may be caused by a quasi-stable layer

formed on the lower part of the fluid layer. In common

with both heat source distributions, even a slight devia-

tion from uniform heating induces a large difference in

the total power input, even though the temperature pro-

files are similar.

We also investigated ‘‘mixed convection’’ where wall

heating at the bottom boundary is combined with inter-

nal heating. The dimensionless parameter H, defined as

the ratio of internal to external Rayleigh number, deter-

mines the form of the temperature profile. A local stable

layer in which temperature increases in the vertical direc-

tion is formed near the bottom boundary when H is

greater than 1, and a temperature profile similar to pure

internally heated convection for H < 1. For large values

of H a strong asymmetry in the vertical velocity ~w ap-

pears, and flow near the bottom boundary becomes

weak. When the heat source distribution is non-uniform

and concentrated near the upper boundary, an asymme-

try appears even for small internal Rayleigh numbers;

that is, small value of Hg. The local stable layer formed

in this case is thicker than for uniform internal heating.

It spreads into the upper half of the fluid layer even for a

small value of Hg. Such a local stable layer might cause a

large change in Rc and kc.
Appendix A. In the calculations, the region z = [0,1] is

divided into some parts, and then Eq. (19) becomes

~w ¼
X5
i¼0

Cif ðiÞðz� aÞ; f ðiÞ ¼
X1
n¼0

bðiÞn ðz� aÞn:

A heat source distribution function exp(�z/e) can be ex-

panded by Taylor series around z = a as

exp � z
e

� �
¼ exp � a

e

� �X1
m¼0

ð�1Þm

m!
z� a

e

� �m
:

By assuming that the power series (26) is a solution of

Eq. (25),

X1

n¼0

(
n!

ðn� 6Þ! bnðz� aÞn�6 � 3k2
n!

ðn� 4Þ! bnðz� aÞn�4

þ 3k4
n!

ðn� 2Þ! bnðz� aÞn�2

þ � RIk
2

CðeÞ exp � a
e

� �X1
m¼0

ð�1Þm

m!em
ðz� aÞmþn

"

þ RIk
2

CðeÞ � k6
� �

ðz� aÞn
#
bn

)
¼ 0:
For this equation to hold for all z, all of the series coef-

ficients bn have to be zero. And then following recursion

relation can be derived.

bn ¼
1

n!

(
3k2ðn� 2Þ!bn�2 � 3k4ðn� 4Þ!bn�4

þ k6 � RaIk
2

CðeÞ

� �
bn�6 þ

RIk
2

CðeÞ exp � a
e

� �"

�
X1
m¼0

ð�1Þm

m!em
bn�6�m

#
ðn� 6Þ!

)
¼ 0:

In the actual calculation, cutoff number for n andm were

20 and 6 respectively, and the region z = [0,1] was di-

vided into 10 intervals.
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[13] A. Yücel, Y. Bayazitoglu, Onset of convection in fluid

layers with non-uniform volumetric energy sources, Trans.

ASME, J. Heat Transfer 101 (1979) 666–671.

[14] W.H. Reid, D.L. Harris, Some further results on the

Bénard problem, Phys. Fluids 1 (1958) 102–110.



1174 Y. Tasaka, Y. Takeda / International Journal of Heat and Mass Transfer 48 (2005) 1164–1174
[15] E.M.R. Sparrow, R.J. Goldstein, V.K. Jonsson, Thermal

instability in a horizontal fluid layer: Effect of boundary

conditions and non-linear temperature profile, J. Fluid

Mech. 18 (1964) 513–528.
[16] F.A. Kulacki, R.J. Goldstein, Hydrodynamic instability in

fluid layers with uniform volumetric energy sources, Appl.

Scientific Res. 31 (1975) 81–109.


	Effects of heat source distribution on natural convection induced by internal heating
	Introduction
	Basic equations with uniform internal heating
	Distributed heat source
	General treatment of heat source distribution
	Concentration of heat source on the bottom boundary
	Concentration of heat source on the top boundary

	Combination with wall heating
	Temperature profile with Internal and External Rayleigh number
	With distributed internal heating

	Conclusions
	Appendix A
	References


